SOFIA Update

German Science Community
SOFIA Workshop

Robert Meyer
SOFIA Program Manager

February 28, 2011
Outline

• Background
• Brief description of SOFIA
• SOFIA science Themes
• First light and first science example results
• Near term schedule
• Typical mission description overview
• SOFIA Science instruments Available this Summer
• Overview of current telescope characteristics and performance
• Summary
Background

- The predecessor to SOFIA, the Kuiper Airborne Observatory (KAO), was decommissioned in 1995 to start SOFIA

- SOFIA established as a 80/20 partnership between US and Germany (NASA and DLR)
 - Development: NASA platform (80%), DLR telescope assembly (TA)(20%)
 - Operations costs: NASA (80%), DLR (20%)
 - Science time: NASA (80%), DLR (20%)

- US Organization of Program:
 - Program management is at NASA Dryden
 - The Science Project is at Ames Research Center
 - The Platform (aircraft) Project is at Dryden (Palmdale, CA)
Brief SOFIA Description
SOFIA
Stratospheric Observatory for Infrared Astronomy

Boeing 747SP

2.7-meter

International partnership:
80% -- NASA (US)
20% -- DLR (Germany)
Layout of Personnel and Accommodations
(upper deck not shown)

- Mission Control & Science Operations Section
- Education & Public Outreach Section
- Science Instrument
- Pressure Bulkhead
- Open Port Telescope Cavity
- Cavity Environmental Control System
- Telescope, 2.5 meter
Why SOFIA?

At 41,000 ft, above more than 99% of the water vapor.
Top Level Requirements

• Telescope Requirements
 ✓ Effective aperture of telescope: 2.5 meters - Meet
 ✓ Telescope elevation range: 20 – 60 degrees - Meet
 ✓ Telescope wavelength range: 0.3 to 1600 microns - Meet
 ✓ Telescope image size: 80 percent of encircled energy
 ✓ 5.3 arcsecond diameter at the focal plane at First Science Flight – Meet
 (~4 arc seconds)
 • Goal 1.6 arcseconds diameter by Dec 2013 (initial science + 3 yrs)
 ✓ Operational capability: 6 Hours above 41,000 ft – Meet (demonstrated)

• 960 science hours per year during routine operations

• At Least 40 Principal or Guest Investigator teams per year

• Global Operations

• Twenty year operational life

• Promote educational opportunities and public outreach
SOFIA Organization - Post LOC

Program Office

- Yearly Resource Allocation
- Reserve Distribution
- Define and Manage Key Milestones
- Ensure Accomplishment of Level I Milestones
- Briefs External Stakeholders
- Oversight of Observatory & Science Operations
- Conflict resolution
- Contract Oversight
- Int’l Interface & Obligations
- Configuration Management
- Instrument Acquisition/Upgrades

Program Manager
NASA Deputy Program Manager

Program Control

Safety & Mission Assurance

Education & Public Outreach

Observatory CE

Airborne Systems Operations Director (NASA)

- A/C, TA & Mission Systems Maintenance/Upgrades
- Flight Crew & Training
- Flight Planning
- Deployment Logistics
- Observatory Ground Support Equipment
- Configuration Management
- SI Integration for flight safety and aircraft compatibility (NASA/DSI)

Science Mission Operations Director (USRA/DSI)

- TA & Mission System Operations
- Scientific Productivity
- Mission Planning
- Instrument Maintenance/Operations
- Science Planning & Allocation
- Data Collection/Analysis/Storage/Access
- Science Community Support
- Science Ground Support Equipment
- Science EPO
- Configuration Management
- SI Integration and Commissioning (USRA/DSI)
SOFIA Science Themes
SOFIA “Science Vision” Themes

Galaxies and the Galactic Center
- The ISM and the Star Formation
- History of External Galaxies

The Formation of Stars and Planets
- Massive stars, protoplanetary disks, & astrochemistry in star forming regions
- What physical, chemical, and dynamic processes are at work in the formation of stars and planets?

The Interstellar Medium of the Milky Way
- The physical processes that regulate the interaction of massive stars and their environment
- The origin of dust in the Milky Way and other galaxies
- The role of large and complex molecules, such as PAH’s in the interstellar medium

Planetary Science
- Primitive Bodies
- Giant Planets
- Small Worlds of our Solar System: Venus and Titan
SOFIA First Light and First Science Example Results*

*Detailed brief by Terry Herter, later in agenda
SOFIA First Light: Observations with FORCAST

Terry Herter + FORCAST team + Project Team (Ames, Dryden, USRA)
SOFIA Early Science

Short Science has 3 flights each with FORCAST and GREAT to allow the instrument teams to get on the sky at the earliest possible opportunity.

FORCAST flew in Dec 2010
GREAT flies in April 2011

Basic Science is a series of 15 flights (12 US & 3 German) that will be open to the astronomical community

• US time was openly competed via a call for proposals
 • 60 proposals received
 • ~ 20 selected

• German time will be used by the GREAT consortium

Begin Spring 2011

• Three flights for German science community
 • Added to basic science flights
visible light (HST)

near-infrared (ESO)

mid-infrared (SOFIA)
Current Telescope Characteristics and Performance*

*Detailed brief by Terry Herter, later in agenda
Telescope Temperature vs. time

- TA primary (red) and secondary (blue) temperatures vs. UT for short science flight #1
Bottom Line

• SOFIA works and is obtaining images!
 – Potential for promising science
• FORCAST works!*
 – FORCAST images a 3.2x3.2 arcminute FoV with 0.75 arcsecond pixels from 5 – 37 μm
 – Obtained near diffraction limited performance for λ > 30 microns
• Flew 10 hour flights with ~ 3 hours at 43,000 feet and 6 hours at or above 41,000 feet
 – Corresponding improvements in background and transmission
 • Temperature stabilized
 • Less aerodynamic buffeting
 • Less water vapor overburden above 41,000 ft

*Detailed brief by Terry Herter, later in agenda
Near Term Events and Schedule
Near Term Schedule

- Systems upgrades 2011 Feb-Mar
- Final test flights (1-2 flights) 2011 mid Mar
- GREAT line ops 2011 late Mar
- GREAT Short Science (3 flights) 2011 Apr
- FORCAST prep/line ops 2011 Apr
- GO Basic Science w/ FORCAST (10 flts) 2011 May-Jun
- Telescope Engineering flights 2011 mid-Jun
- GREAT prep 2011 mid-Jun
- GO Basic Science w/ GREAT (8 flts) 2011 Jun-Jul
- Req maintenance, avionics upgrade 2011 Aug
- Commissioning or TA V & V (6 flights) 2011 Aug-Sep
- Commissioning or TA V & V (5 flights) 2011 Oct
- Upgrades (part 1 of 7) 2011 Oct – 2012 Mar
 - avionics, cavity insulation, mirror coating, TA, workstations, MADS
- Functional test flights 2012 Apr
- Commissioning 2012 May
SOFIA Science Instruments
Available this Summer*

* Detailed brief by Eric Beklin, later in agenda
Instrument R/λ graph

SOFIA 1st Generation Science Instruments

- GREAT
- FIFI LS
- EXES
- FLITECAM w/ grisms
- HIPO
- FORCAST w/ grisms
- FORCAST
- HAWC
• From left: FORCAST w/ foreoptics (test equipment), counterweight rack, and PI rack
FORCAST on the telescope

- Positioning FORCAST to mount on telescope
- Cryogen transfers on the plane
• GREAT testing
 – EMI test completed
 – Preliminary analysis indicates no interference or standing-wave issues
 – Software testing in HILS complete
 – Both the GREAT team and the KOSMA-to-SCL interpreter team have been identifying and fixing bugs
 – Line Ops #1 complete
 – No major issues, planning additional GREAT/Aircraft test prior to LO#2
• GREAT Mission Ops support
 – Procedure development
 – Supported Installation of instrument
 – Line Ops
Typical Mission Characteristics
Water Vapor “Overburden” at 41,000 feet (winter, spring, summer, fall)

Fig. 7.—The MLS-determined zenith water vapor overburden for (a) winter (DJF), (b) spring (MAM), (c) summer (JJA), and (d) autumn (SON)
Typical Science Mission
(Altitude vs Time)

Best Science
- Least aero buffet
- Cold soaked
- Low water overburden

Start Descent, Based on fuel remaining

~ 6 hours

35k ft
~2.75 hours

41k ft

43k ft, 3.75 hours

~6 hours

~10 hour flight

~10 hour flight

~14 hour duty day

~10 hour flight

~14 hour duty day

Crew Brief

Debrief

Note: Altitude is based on fuel remaining (weight)
Sample Flight Plan

FORCAST DRM flight for Feb. 3, 2008
ETD: 0120 Z
ETE: 09:30
ETA: 1050 Z

A. Meyer, USRA
April, 2007
Summary

• SOFIA progressing well!
• FORCAST and observatory worked well on short science I
 – Already obtaining promising scientific results
• Best results obtain at highest altitudes in about last 6 hours of flight
 – Less aero buffeting of telescope
 – Less water vapor overburden
 – Telescope assembly cold soaked
• Pointing ???
• On Track to start flying GREAT in April
• On track to start basic science I in May
• On track to start basic science II in July
• SOFIA program looking forward to upcoming German science flights
Questions?

For additional information:
http://www.sofia.usra.edu