Numerische Simulation des Formgebungsprozesses von endlosfaserverstärkten Thermoplasten

A.F. Johnson*, T. Keilig*, A.K. Pickett**

Übersicht

Einleitung

Beim industriellen Blechumformen kann man auf die praktische Erfahrung aus über einem Jahrhundert zurückgreifen, die heute zusätzlich durch eine ganze Reihe kommerzieller Umformsimulations-Programme unterstützt wird. Die Simulation von Formgebungsprozessen für Metallbleche (Streckumformen und Tiefziehen) mit Hilfe von Finiten Elementen (FE) wird üblicherweise durch eine große Verformungen zulassende FE-Analyse sowie durch geeignete Elementierungen und Materialgesetze für die Plastizität des Metalls sehr gut realisiert. So können selbst Effekte wie das extreme Dünnerwerden des Bleches, eventuelle Rißbildung oder das elastische Zurückfedern zuverlässig vorhersagt werden. Um endlosfaserverstärkte
Thermoplaste wettbewerbsfähig zu machen, ist eine vergleichbare Software für diese Materialien notwendig, damit auch hier der Zeit- und Kostenaufwand bis zum Erreichen der Produktionsreife stark reduziert werden kann. Eine solche FE-Simulation bringt jedoch erhebliche Schwierigkeiten im Vergleich zur Metalltiefezieh-Simulation mit sich.

Abb. 1: Prinzipieller Ablauf der Bauteilherstellung mit Hilfe einer beheizbaren Presse (Preßformen, bzw. engl. Thermoforming).

Die Umformmechanismen

Abb. 2: Die dominierenden Umformmechanismen in endlosfaserverstärkten Thermoplasten.
Rheologische Werkstoffgesetze für endlosfaserverstärkte Thermoplast-Prepregs

\[
\begin{align*}
\sigma_{11} &= 4 \eta_L(\dot{\varepsilon}) + 2 \eta_T(\dot{\varepsilon}) \begin{bmatrix} \dot{\varepsilon}_{11} + E_{11} \\ \dot{\varepsilon}_{12} \end{bmatrix} \\
\sigma_{22} &= 2 \eta_T(\dot{\varepsilon}) + 4 \eta_L(\dot{\varepsilon}) \begin{bmatrix} \dot{\varepsilon}_{11} + E_{21} \\ \dot{\varepsilon}_{12} \end{bmatrix} \\
\sigma_{12} &= 0 \begin{bmatrix} \dot{\varepsilon}_{11} + E_{12} \\ \dot{\varepsilon}_{12} \end{bmatrix}
\end{align*}
\]

Hierbei sind für jedes Schalen-Element \(\sigma_{ij}\) die Spannungskomponenten, \(\dot{\varepsilon}_{ij}\) die Komponenten des Geschwindigkeits-Gradienten (bzw. der Dehnungsraten) und \(E_{ij}\) die inkrementalen Lagrangeschen Spannungskomponenten. Des weiteren ist \(\eta_L\) die Longitudinal-Viskosität des Prepregs in Faserrichtung, \(\eta_T\) die Transversal-Viskosität des Prepregs quer zu den Fasern und \(E\) der E-Modul des Prepregs in Faserrichtung. Die Einzelkomponenten der Spannung, Dehnung und Dehnungsgeschwindigkeit sind auf das lokale kartesische Koordinatensystem \((x_1, x_2)\) des jeweiligen Elements bezogen, wobei die \(x_1\)-Achse in Faserrichtung zeigt. Die bedeutsamen viskoelastischen Effekte in Polymerschmelzen werden im Modell über eine Temperatur- und Dehnungsratenabhängigkeit der beiden Prepregviskositäten berücksichtigt.

\[
\begin{align*}
\sigma_{11} &= 4 \eta_1(\dot{\varepsilon}) + 2 \eta_1(\dot{\varepsilon}) \begin{bmatrix} \dot{\varepsilon}_{11} + E_{11} \\ \dot{\varepsilon}_{12} \end{bmatrix} \\
\sigma_{22} &= 2 \eta_1(\dot{\varepsilon}) + 4 \eta_1(\dot{\varepsilon}) \begin{bmatrix} \dot{\varepsilon}_{11} + E_{21} \\ \dot{\varepsilon}_{12} \end{bmatrix} + E_1 \begin{bmatrix} m^4 & m^2n^2 & m^3n \\ m^2n^2 & n^4 & mn^3 \\ mn^3 & mn^2 & m^2n^2 \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{bmatrix}
\end{align*}
\]

Hierbei ist \(\eta_1\) die charakterisierende Viskosität für ein Gewebe-Prepreg, \(E_1\) und \(E_2\) sind die E-Moduli des Gewebe-Prepregs in Kett- bzw. Schußrichtung sowie ferner \(m=\cos\phi\) und \(n=\sin\phi\). Im kartesischen Elementen-Koordinatensystem \((x_1, x_2)\) zeigt die \(x_1\)-Achse nun in einer der beiden Faserrichtungen und die zweite Faserrichtung verläuft im Winkel \(\phi\) dazu.

Nachdem in den Gleichungen (1) und (2) die Summe eines viskosen Matrix-Terms und eines elastischen Faser-Terms gebildet wird, muß noch darauf hingewiesen werden, daß sich die Werte der Viskositätskoeffizienten für Thermoplast-Prepregs deutlich von denen der reinen Polymermatrix unterscheiden. Mit Hilfe speziell entwickelter Testverfahren konnten die Prepreg-Viskositäten bestimmt werden [7, 8]. Die so gefundenen Viskositäten für Thermoplast-Prepregs liegen etwa 3 bis 4 Größenordnungen über denen der reinen Matrixviskosität und weisen eine starke Temperatur- und Geschwindigkeitsabhängigkeit auf.
Beschreibung der interlaminaren viskosen Reibung

Das interlaminare Gleitverhalten wird durch ein viskoses Reibungsgesetz wiedergegeben, das experimentell bestimmt wurde [9] und die interlaminare Schubspannung wie folgt beschreibt:

\[\tau = \tau_0 + k \nu^n \]

(3)

Hierbei ist \(\tau_0 \) die Fließschubspannung, \(\nu \) die Relativgeschwindigkeit und die zwei Parameter \(k \) und \(n \) erfassen die viskose Reibung und müssen empirisch festgelegt werden. Die viskose Reibung ist abhängig von der Temperatur, vom aufgebrachten Normaldruck, von der Relativgeschwindigkeit und von der Differenz im Faserverband zwischen den beiden beteiligten Lagen. Zur Bestimmung des Verhaltens der Laminatlagen bei Gesenkkontakt wurden ebenfalls Versuche durchgeführt [9] und eine Gleichung (3) ähnliches Reibungsgesetz formuliert.

Wärmeübertragung und Wärmeleitung

Ziele und Funktion der numerischen Simulation

Ausgehend von den rheologischen Modellgleichungen (1) und (2) wurde ein temperaturabhängiges viskoelastisches Materialgesetz entwickelt und in den expliziten FE-Code der schon bestehenden Simulations-Software PAM-STAMP® für das Metalltiefziehen implementiert, um so auch das ebene Verformungsverhalten zu charakterisieren. Jede Einzellage ist durch ein Kontinuum modelliert, das zum einen aus einer inkompressiblen Newton'schen Flüssigkeit besteht und zum anderen aus einem Satz (für UD-Prepregs) bzw. aus zwei Sätzen (für Gewebeverstärkungen) an hochsteifen Fasern. Diese Verstärkungsfasern werden als elastisch angenommen und vom Fluß der viskosen Matrix mitgeschleppt.

Numerische Simulationen und Validierung

![Abb. 3: Faltenbildung bei einem simulierten Gewebezugversuch in perspektivischer Ansicht.](image)

In diesem Beitrag werden nun Simulationsergebnisse eines wesentlich komplexeren, doppeltgekrümmten Bauteils als anspruchsvollerer Test für die Effizienz und die Stabilität der Software vorgestellt. Es handelt sich um ein Winkelstück, das erforderlich ist, um eine sinusförmige Aussteifung eines Hubschrauberbodens mit ebenen Flanschen zu versehen. Hergestellt wird das Bauteil durch Preßformen in einem Aluminium-Gesenk aus vier Lagen Kohlefasergeweb/PEI-Prepreg. Wegen der doppeltgekrümmten Form ist das ausgewählte Bauteil sowohl für die Umformbarkeit des endlosfaserverstärkten Thermoplastmaterials
Bei der DLR wurden einige Winkelstücke in einer Heißpresse umgeformt. Die Parameter
hierbei waren eine Ausgangs-Temperatur des Laminates von 340 °C, eine Temperatur des
Aluminiumgesenks von 190 °C, ein maximaler Preßdruck von 60 bar sowie eine Umformzeit
von 3 Sekunden. So war es möglich, die detaillierten Vorhersagen der Umformsimulation mit
den tatsächlichen Bauteilen zu vergleichen. Dabei wurde eine sehr gute Übereinstimmung
zwischen den gemessenen und den berechneten Faserwinkeln festgestellt. Auch die beginnende
Faltenbildung konnte am realen Bauteil beobachtet werden. Die Scherung des Gewebeprepregs
bringt einen Dickenzuwachs mit sich, so daß die hergestellten Bauteile lokale Dicken-
unterschiede aufweisen, die mit den berechneten Dicken ebenfalls sehr gut übereinstimmen.

Zusammenfassung
Für das Preßformen von endlosfaserverstärkten Thermoplasten wurde eine FE-Simulation
developpt. Um das Fließverhalten des Laminates unter dem Druck des sich schließenden
Gesenks bis hin zum Wiedererstarren der Matrix infolge Abkühlung genau beschreiben zu
können, wurden signifikante Änderungen an der vorhandenen Software PAM-STAMP® für das
Metallziehen erforderlich. Ein eigens entwickeltes viskoses Reibungsgesetz für die
Kontaktflächen zwischen den Einzellagen untereinander bzw. dem Gesenken, ein thermo-
viskoelastisches Materialmodell für die ebenen Verformungen der einzelnen Prepreglagen sowie
ein geeignetes Modell zur Berechnung der Wärmeleitung wurden implementiert. So können
selbst Änderungen in der Faserorientierung, transversales Faserfließen, Delaminationen und
Schubverformungen in Geweben inklusive der eventuell damit verbundenen Faltenbildung
simuliert werden. Abkühlungseffekte sind durch die Wärmeübertragung zwischen Laminat und
Gesenken sowie durch temperaturabhängige Matrizenviskositäten berücksichtigt. Zur Verifizierung
und Optimierung der FE-Simulation wurden für eine Vielzahl von Testgeometrien Rechenergebnisse
durchgeführt. In diesem Beitrag werden nur die Ergebnisse von Umformsimulationen eines
industriellen Prototyp-Bauteils vorgestellt. Dadurch wird gezeigt, daß diese Simulations-
Software die Leistungsfähigkeit besitzt, ein nützliches und unverzichtbares Werkzeug für die
Composite-Industrie zu sein.

Literatur
[1] W. Werner, „Cost Effectiveness of Structural Applications of Fibre Reinforced
Thermoplastics“, Int. Symp. Advanced Materials for Lightweight Structures, ESTEC,
Continuous Fibre Reinforced Thermoplastic Sheets“, Composites Manufacturing, Vol. 6,
Nr. 3/4, S. 237-243, September 1995
and First Industrial Numerical Results of a Finite Element Code to Simulate the
Thermoforming Process“, ICAC ’95, Nottingham UK, 6.-7. Sept. 1995
Vol. 20, Nr. 1, 1989
ICAC ’95, Nottingham UK, 6.-7. Sept. 1995
Thermoplastic Composites for Pressforming Applications“, ICCM-10, Whistler, Canada,
August 1995